1,454 research outputs found

    Centre-to-limb spectro-polarimetric diagnostics of simulated solar photospheric magneto-convection: signatures of photospheric Alfven waves

    Get PDF
    Using numerical simulations of the magnetised solar photosphere carried out with the radiative magneto-hydrodynamic code, MURaM, and detailed spectro-polarimetric diagnostics of the simulated photospheric 6302A FeI line, spectro-polarimetric signatures of Alfven waves in magnetised intergranular lanes of the simulated solar photosphere were analysed at different positions at the solar disk. The torsional Alfven waves in the intergranular lanes are horizontal plasma motions, which do not have a thermal perturbation counterpart. We find signatures of Alfven waves as small-scale line profile Doppler shifts and Stokes-V area asymmetry enhancements in the simulated off-disk centre observations. These photospheric features disappear when the simulated observations are degraded with a telescope PSF similar to the one of Hinode. We analyse the possibilities for direct observations and confirmation of Alfven wave presence in the solar photosphere.Comment: 6 pages, 3 figures, accepted to PAS

    Directional Time-Distance Probing of Model Sunspot Atmospheres

    Get PDF
    A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilised a "directional time-distance helioseismology" measurement scheme to study the implications of the returning fast and Alfv\'en waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependant directional behaviour in the travel-time measurements, consistent with the signatures of MHD mode conversion. We found this to be the case regardless of the sunspot field strength or depth of its Wilson depression. We also isolated and analysed the direct contribution from purely thermal perturbations to the measured travel times, finding that waves propagating in the umbra are much more sensitive to the underlying thermal effects of the sunspot.Comment: 9 pages, 8 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Probing sunspots with two-skip time-distance helioseismology

    Full text link
    Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. With sufficient modeling effort, these should lead to better understanding of sunspot structure

    Multi-objective integer programming: An improved recursive algorithm

    Get PDF
    This paper introduces an improved recursive algorithm to generate the set of all nondominated objective vectors for the Multi-Objective Integer Programming (MOIP) problem. We significantly improve the earlier recursive algorithm of \"Ozlen and Azizo\u{g}lu by using the set of already solved subproblems and their solutions to avoid solving a large number of IPs. A numerical example is presented to explain the workings of the algorithm, and we conduct a series of computational experiments to show the savings that can be obtained. As our experiments show, the improvement becomes more significant as the problems grow larger in terms of the number of objectives.Comment: 11 pages, 6 tables; v2: added more details and a computational stud

    Inversions of synthetic umbral flashes: effects of the scanning time on the inferred atmospheres

    Full text link
    The use of instruments that record narrow band images at selected wavelengths is a common approach in solar observations. They allow the scanning of a spectral line by sampling the Stokes profiles with 2D images at each line position, but require a compromise between spectral resolution and temporal cadence. We evaluate the impact of the time-dependent acquisition of different wavelengths on the inversion of spectropolarimetric profiles from chromospheric lines during umbral flashes. Simulations of non-linear wave propagation in a sunspot were performed with the code MANCHA. Synthetic Stokes parameters in the Ca II 8542 A line in NLTE were computed for an umbral flash using the code NICOLE. Artificial profiles with the same wavelength coverage and temporal cadence from reported observations were constructed and inverted. The inferred atmospheric stratifications were compared with the original models. The inferred atmospheres provide a reasonable characterization of the thermodynamic properties of the atmosphere during most of the phases of the umbral flash. Only at the early stages of the flash, when the shock wave reaches the formation height of the line, the Stokes profiles present apparent wavelength shifts and other spurious deformations. These features are misinterpreted by the inversion code, which can return unrealistic atmospheric models from a good fit of the Stokes profiles. The misguided results include flashed atmospheres with strong downflows, even though the simulation exhibits upflows during the umbral flash, and large variations in the magnetic field strength. Our analyses validate the inversion of Stokes profiles acquired by sequentially scanning certain selected wavelengths of a line profile, even in the case of rapidly-changing events such as umbral flashes. However, the inversions are unreliable during a short period at the development phase of the flash.Comment: Accepted for publication in A&

    Optimising a nonlinear utility function in multi-objective integer programming

    Get PDF
    In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective integer programming problem.Comment: 11 pages, 2 tables; v3: minor revisions, to appear in Journal of Global Optimizatio

    First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)

    Full text link
    Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a 5 ML W(110) substrate employing the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained for the converged and optimized structures. We find significant contractions (∼\sim 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared to the Fe bcc bulk moment of 2.2 μB\mu_B, the magnetic moment for the surface layer of Fe is enhanced (i) by 15% to 2.54 μB\mu_B for 1 ML Fe/5 ML W(110), and (ii) by 29% to 2.84 μB\mu_B for 2 ML Fe/5 ML W(110). The inner Fe layer for 2 ML Fe/5 ML W(110) has a bulk-like moment of 2.3 μB\mu_B. These results agree well with previous experimental data

    Low-Frequency Conducted Emissions Assessment for Electric Powertrain

    Get PDF
    The conducted emissions (CE) in powertrain applications are a major concern due to the high current peaks and transients from torque profiles and sudden speed changes. This paper investigates the time-domain noises analytically through a curve-fitting process, whose results can be used to reproduce the noise waveforms avoiding the need to store the entire waveform. Besides, common-mode (CM) and differential-mode (DM) voltages from speed changes of a PMSM (permanent magnet synchronous motor) powertrain are compared, in terms of harmonic components and noise amplitude, by using line impedance stabilization network (LISN) according to different standards. It was observed that DM emissions, at low frequencies, are better coupled to DO-160G LISN and increase progressively with speed rise, while CM noise levels are kept constant
    • …
    corecore